طرح درس موضوعات ویژه دکتری
Chapter 1. Quest for Attosecond Optical Pulses.............................................. 1
1.1 | Ultrafast Optics 1 |
1.1.1 | High-Power Applications 1 |
1.1.1.1 | Power, Peak Power, and Pulse Duration 1 |
1.1.2 | High-Speed Imaging 7 |
1.1.2.1 | Framing Camera 8 |
1.1.3 | Timescale of Electron Dynamics: The New Frontier 11 |
1.1.3.1 | Atomic Unit of Time 11 |
1.2 | Attosecond Light Pulses 12 |
1.2.1 | Mathematical Description of Attosecond Optical Pulses 13 |
1.2.1.1 | Time Domain 13 |
1.2.2 | Propagation of Attosecond Pulse in Linear Dispersive |
Media 17 | Index of Refraction and Scattering Factor 17 |
Transmission 19 | |
1.2.2.3 | Gas Medium 19 |
Dispersion 22 | |
1.2.2.8 | Pulse Broadening and Compression 23 |
1.3 Overview of Attosecond Pulse Generation 26
1.3.1 | Pulse Compression by Perturbative Harmonic Generation 27 |
1.3.2.1 | Attosecond Pulse Train 29 |
1.3.3 | Measurement of Attosecond Pulse Duration 34 |
1.3.3.1 | Response of the Gas Photocathode 34 |
1.4 | Properties of Attosecond XUV Pulses 38 |
1.4.1 | Pulse Energy 38 |
1.4.2.1 | XUV Mirrors at Glancing Incidences 39 |
1.4.3 | Challenges and Opportunities in Attosecond Optics 40 |
Chapter 2 Femtosecond Driving Lasers ....................................................... 47
2.1 Introduction 47
2.2 Laser Beam Propagation 49
2.2.1 | Gaussian Beam in Free Space 49 |
| |||||||
2.2.5.1 | Optical Kerr Effect 54 |
| |||||||
2.2.5.3 | Kerr Lens and Self Focusing 54 |
| |||||||
2.3 | Laser Pulse Propagation 56 |
| |||||||
2.3.1 | Wavelength Bandwidth 56 |
| |||||||
2.3.2.1 | Sellmeier Equation 57 |
| |||||||
2.4 | Mirrors 59 |
| |||||||
2.4.1 | Metal Mirrors 60 |
| |||||||
2.4.2.1 | High-Energy Mirrors 60 |
| |||||||
2.4.3 | Chirped Mirrors with Negative GDD 62 |
| |||||||
Prism Pairs 62 |
| ||||||||
2.5.1 | Phase Delay 63 |
| |||||||
Grating Pairs 68 |
| ||||||||
2.6.1 | Phase Matching 69 |
| |||||||
Phase 70 |
| ||||||||
Group Delay Dispersion 70 |
| ||||||||
Laser Pulse Propagation in Nonlinear Media 71 |
| ||||||||
2.7.1 | Self-Phase Modulation 71 |
| |||||||
2.7.2.1 | Highly Nonlinear Fiber 73 |
| |||||||
2.7.3 | Hollow-Core Fibers 74 |
| |||||||
Femtosecond Oscillator 75 |
| ||||||||
2.8.1 | Ti:Sapphire Crystals 76 |
| |||||||
2.8.2.1 | Longitudinal Modes 76 |
| |||||||
2.8.3 | Kerr Lens Mode Locking 78 |
| |||||||
2.8.3.1 | Stability Range of a Laser Cavity 79 |
| |||||||
Chirped Pulse Amplifiers 79 |
| ||||||||
2.9.1 | Configurations 79 |
| |||||||
2.9.1.1 | Multipass Amplifier 79 |
| |||||||
2.9.2 | Gain Narrowing 80 |
| |||||||
2.9.2.1 | Gain Cross Section 80 |
| |||||||
2.9.3 | Gain Narrowing Compensation 83 |
| |||||||
2.9.3.1 | Spectral Shaping 83 |
| |||||||
Pulse Characterization |
| ||||||||
2.10.1 | FROG | 84 | |||||||
2.10.2 | Multiphoton Intrapulse Interference Phase Scan | 87 |
| ||||||
2.10.2.1 | Setup 88 |
| |||||||
2.11 Few-Cycle Pulses | 90 |
| |||||||
2.11.1 | Chirped Mirror Compressor 90 |
| |||||||
2.11.2.1 | Zero-Dispersion Stretcher 91 |
| |||||||
MIIPS for Compressing Pulses from Hollow-Core |
| ||||||||
Fibers 92 | 2.11.2.4 |
| |||||||
Chapter 3 Stabilization of Carrier-Envelope Phase...................................... 101
3.1 | Introduction 101 |
3.1.1 | Definition of Carrier-Envelope Phase 101 |
3.1.1.1 | Linearly Polarized Field 101 |
3.1.2 | Physics Processes Sensitive to Carrier-Envelope Phase 103 |
3.1.2.1 | Sub-Cycle Field Strength Variation 103 |
3.2 Carrier-Envelope Phase and Dispersion 104
3.2.1 | Effects of Group and Phase Velocity Difference 104 |
3.2.1.1 | Group and Phase Velocity 104 |
3.2.2 | Prism-Based Compressor 107 |
3.3 | Carrier-Envelope Phase in Laser Oscillators 108 |
3.3.1 | Carrier-Envelope Phase Offset Frequency 109 |
3.3.1.1 | Carrier-Envelope Phase Change Rate 109 |
3.3.2 | Stabilization of Offset Frequency 111 |
3.3.2.1 | Measuring f0 by f-to-2f Interferometers 111 |
3.4 Stabilization of the Carrier-Envelope Phase of Oscillators 112
3.4.1 | Oscillator Configuration 112 | ||||
3.4.2.1 | White-Light Generation 113 | ||||
3.4.3 | Locking the Offset Frequency 115 | ||||
3.4.3.1 | Phase Detector and Proportional Integral | ||||
Control 115 | |||||
3.4.3.2 | Stability of the Locked f0 116 | ||||
3.4.4 | Noise of the Interferometer 117 | ||||
3.4.4.1 | Error in Measuring f0 117 | ||||
3.4.4.2 | Interferometer Locking 118 | ||||
Measurement of the Carrier-Envelope Phase of Amplified Pulses 119 | |||||
3.5.1 | Single Shot f-to-2f Interferometry 121 | ||||
3.5.1.1 | Interferometer Setup 121 | ||||
3.5.2 | Precisions of the Carrier-Envelope Phase Measurement 123 | ||||
3.5.2.1 | Experimental Determination of the | ||||
3.5.2.2 | |||||
3.5.3 | Two-Step Model 126 | ||||
3.5.3.1 | Filamentation in Sapphire Plate 126 | ||||
3.5.3.4 | |||||
Carrier-Envelope Phase Shift in Stretchers and Compressors 132 | |||||
3.6.1 | Carrier-Envelope Phase Shift Introduced by Grating-Based | ||||
3.6.1.1 | Carrier-Envelope Phase 132 | ||||
3.6.2 | Carrier-Envelope Phase Shift Introduced by Grating-Based | ||||
3.6.2.1 | Pulse Duration 136 | ||||
Stabilization of the Carrier-Envelope Phase in CPA 137 | |||||
3.7.1 | Using the Compressor 137 | ||||
3.7.1.1 | Frequency Response of the PZT Mount 138 | ||||
3.7.1.3 | |||||
3.7.2 | Using the Stretcher 140 | ||||
3.7.2.1 | Dependence of Carrier-Envelope Phase on the | ||||
3.7.2.2 | Compensation of Slow Carrier-Envelope Phase |
| |||
3.7.2.3 |
| ||||
3.8 | Controlling of the Stabilized Carrier-Envelope Phase 145 |
| |||
3.8.1 | Carrier-Envelope Phase Staircase 145 |
| |||
3.9 | Carrier-Envelope Phase Measurements after Hollow-Core Fibers 146 |
| |||
3.9.1 | Experimental Setup 147 |
| |||
3.10 Stabilizing Carrier-Envelope Phase of Pulses from Adaptive Phase
Modulators 152
3.10.1 | Carrier-Envelope Phase Stability 152 |
3.10.3 | |
3.11 Power Locking for Improving Carrier-Envelope Phase Stability 156 | |
3.11.1 | Feedback Loop 156 |
3.12 Carrier-Envelope Phase Measurements with Above-Threshold
Chapter 4 Semiclassical Model ................................................................ 165
4.1 | Three-Step Model 165 |
4.1.1 | Recombination Time 168 |
4.1.1.1 | Graphic Solutions and Kramers–Henneberger |
4.1.1.2 | Numerical Solutions and Fitting |
Functions 169 | |
4.1.2 | Return Energy 170 |
4.1.4.1 | Short Trajectory 174 |
4.2 Tunneling Ionization and Multiphoton Ionization 175
4.2.1 | The Keldysh Theory 176 |
4.2.1.1 | Volkov States 176 |
4.2.1.3 | Keldysh Parameter 178 |
4.2.2 | PPT Model 180 |
4.2.3.1 | Cycle-Averaged Rate 184 |
4.2.3.3 | Saturation Ionization Intensity 185 |
4.2.4 | Attosecond Electron and Photon Pulses 185 |
4.2.4.1 | Returning Electron Pulse 185 |
Cutoff Photon Energy 186 | |
4.3.1 | Saturation Field and Intensity 187 |
4.3.1.1 | Sech Square Pulse 188 |
Field 192 | |
4.3.1.7 | Ionization Probability 193 |
4.3.2 | Cutoff due to Depletion of the Ground State 194 |
4.3.2.1 | Ionization Potential 195 |
Free Electrons in Two-Color Laser Fields 199 | |
4.4.1 | Equation of Motion 199 |
4.4.1.1 | Return Time 201 |
4.4.2 | Return Energy 202 |
Polarization Gating 204 | |
4.5.1 | Electrons in Elliptically Polarized Laser Fields 205 |
4.5.1.1 | Laser Field 205 |
4.5.2 | Isolated Attosecond Pulse Generation 208 |
4.5.2.1 | Principle of the Polarization Gating 208 |
Polarization Gating 215 | 4.5.2.7 |
Chapter 5 Strong Field Approximation ...................................................... 223
5.1 Analytical Solution of the Schrödinger Equation 223
5.1.1 | Approximations 223 |
| ||||
5.1.1.1 | Dipole Radiation and Dipole Moment 223 |
| ||||
5.1.2 | Continuum Wave Packet 227 |
| ||||
5.1.2.1 | Analytical Approach to Solve the Schrödinger |
| ||||
5.1.2.2 | Solution of the Differential Equation 229 |
| ||||
5.1.3 | Saddle-Point Approach 231 |
| ||||
5.1.3.1 | One-Dimensional Saddle Point |
| ||||
5.1.3.2 |
| |||||
5.1.4 | Dipole Moment for Linearly Polarized Driving Laser 236 |
| ||||
5.1.4.1 | Laser Field 236 |
| ||||
5.1.5 | Dipole Transition Matrix Element 238 |
| ||||
5.1.6.1 | Correction to the Recombination Term 240 |
| ||||
5.2 | Temporal Phase of Harmonic Pulses 242 |
| ||||
5.2.1 | Intrinsic Dipole Phase 243 |
| ||||
5.2.2.1 | Laser Pulses 244 |
| ||||
5.2.3 | Experimental Results 247 |
| ||||
5.2.3.1 | Using 40 fs Lasers 247 |
| ||||
5.3 | Effects of Molecular Orbital Symmetry 250 |
| ||||
5.3.1 | Experimental Results 251 |
| ||||
5.3.1.1 | Ellipticity Control 251 |
| ||||
5.3.1.2 | High Harmonic Cutoff 252 |
| ||||
5.3.2 | Numerical Simulations 253 |
| ||||
5.3.2.1 | Bonding Orbital and Antibonding Orbital 254 |
| ||||
5.4 | Polarization Gating Revisit 258 |
| ||||
5.4.1 | SFA for Polarization Gating 258 | |||||
5.4.1.1 | Single Atom Response 258 | |||||
5.4.2 | Results of Simulations 261 | |||||
5.4.2.1 | Double Attosecond Pulses Generated with | |||||
Multicycle NIR Lasers 261 | ||||||
5.4.2.2 | Isolated Attosecond Pulse Generated with | |||||
5.4.2.3 | ||||||
5.5 | Complete Reconstruction of Attosecond Burst 267 | |||||
5.5.1 | Approximations 267 | |||||
5.5.1.1 | Strong Field Approximation 267 | |||||
5.5.2 | Ionization in Two-Color Field 268 | |||||
5.5.2.1 | XUV Field 268 | |||||
5.5.2.5 | ||||||
5.5.3 | Saddle Point Approximation 273 | |||||
5.5.4.1 | Electron Phase Modulator 275 | |||||
Chapter 6 Phase Matching ...................................................................... 281
6.1 | Wave-Propagation Equation 282 |
| |||
6.1.1 | Wave Equations for the Total Fields 282 |
| |||
6.1.1.1 | Maxwell Equations 282 | ||||
6.1.2 | Wave Equations for High-Harmonic Fields 283 | ||||
6.1.2.1 | Monochromatic Driving Laser 284 | ||||
6.1.3 | Linearly Polarized Fields 284 | ||||
6.1.3.1 | Paraxial Approximation 285 | ||||
Phase Matching for Plane Waves 285 | |||||
6.2.1 | Perfect Phase Matching in Lossless Media 286 | ||||
6.2.1.1 | Plasma Dispersion 287 | ||||
6.2.2 | Effect of Absorption 290 | ||||
6.2.2.1 | Absorption Limit 290 | ||||
6.2.3 | Maker Fringes 292 | ||||
6.2.5 | |||||
6.2.5.1 | Quasiphase Matching 296 | ||||
Phase Matching for Gaussian Beams 296 | |||||
6.3.1 | On-Axis Phase Matching without Plasma and Gas | ||||
6.3.2 | |||||
Phase Matching for Pulsed Lasers 301 | |||||
6.4.1 | Wave Equation 301 | ||||
6.4.1.1 | Beams with Axial symmetry 302 | ||||
6.4.2 | Paraxial Wave Equation in the Frequency Domain 304 | ||||
Compensating the Chirp of Attosecond Pulses 310 | |||||
6.5.1 | Numerical Simulation Method 311 | ||||
6.5.1.1 | NIR Laser Field 311 | ||||
6.5.2 | Simulation Results 314 | ||||
6.5.2.1 | Ground-State Depletion 314 | ||||
Phase Matching in Double-Optical Gating 320 | |||||
6.6.1 | Principle of Double-Optical Gating 321 | ||||
6.6.2.1 | Intrinsic Phase of Isolated Attosecond Pulses 323 | ||||
6.6.3 | Experimental Results 327 |
| |||
6.3.3.1 | Experimental Setup 327 |
| |||
6.6.4 | Gas-Target Location 329 |
| |||
6.6.4.1 | Argon Gas 329 |
| |||
6.6.5 | Gas Pressure 330 |
| |||
6.6.5.1 | Argon Gas 330 |
| |||
6.7 | Summary 333 |
| |||
Problems 333 |
| ||||
Review Articles | 334 |
| |||
Polarization Gating | 335 |
| |||
Double-Optical Gating | 335 |
| |||
Dipole Phase | 336 |
| |||
Chapter 7 Attosecond Pulse Trains........................................................... 337
7.1 Truncated Gaussian Beam 338
7.1.1 Electric Field 338
7.1.1.1 | Bessel Functions 340 |
| |||
7.1.2 | Transverse Variation 343 |
| |||
7.1.3.1 | Gouy Phase 345 |
| |||
7.2 | Detection Gas 346 |
| |||
7.2.1 | Effects of Spin–Orbit Coupling and Inner |
| |||
7.2.2 |
| ||||
7.3 | Electron Time-of-Flight Spectrometer 349 |
| |||
7.3.1 | Field-Free TOF 350 |
| |||
7.3.1.1 | Energy Resolution 351 |
| |||
7.3.2 | Magnetic Bottle 353 |
| |||
7.3.2.1 | Parallelization of the Trajectories 353 |
| |||
7.3.3 | Position-Sensitive Detector 358 |
| |||
7.3.3.1 | Experimental Determination of the Energy | ||||
Resolution 361 | |||||
7.3.3.2 | Setup 361 | ||||
7.3.4 | Velocity Map Imaging 363 | ||||
7.4 | Measurement of Temporal Width of a Single Harmonic Pulse 364 | ||||
7.4.1 | Sidebands 366 | ||||
7.5 Reconstruction of Attosecond Beating by Interference of Two-Photon
Transition 368
7.5.1 | Reconstruction of Attosecond Beating by Interference of |
7.5.1.1 | Spectral Phase and Harmonic Emission Time 370 |
7.5.2 | Transition-Matrix Element in XUV Field 371 |
7.5.2.1 | Fermi’s Golden Rule 371 |
7.5.3 | Transitions in XUV and IR Fields 373 |
7.5.3.1 | Attosecond Pulse Train Generated with One-Color |
7.5.3.2 | Sideband Intensity Oscillation 374 |
7.6 | Complete Reconstruction of Attosecond Bursts 376 |
7.6.1 | CRAB Trace 377 |
7.6.1.1 | Temporal-Phase Gate 379 |
7.6.2 | Linearly Polarized Dressing Laser Field 380 |
7.6.2.1 | Energy Shift 381 |
7.6.3 | Attosecond Pulse Train 384 |
7.6.3.1 | Tm ¼ 2Ttr 384 |
7.6.4 | Perturbative Regime of CRAB 384 |
7.6.4.1 | Attosecond Pulse Train Generated with One-Color |
7.6.4.2 |